On Partial Sums of Normalized Error Function
نویسندگان
چکیده
منابع مشابه
Almost Sure Central Limit Theory for Self-Normalized Products of Sums of Partial Sums
Let {X,Xn}n∈N be a sequence of independent and identically distributed i.i.d. positive random variables with a nondegenerate distribution function and EX μ > 0. For each n ≥ 1, the symbol Sn/Vn denotes self-normalized partial sums, where Sn ∑n i 1 Xi and V 2 n ∑n i 1 Xi − μ . We say that the random variable X belongs to the domain of attraction of the normal law if there exist constants an > 0,...
متن کاملPartial Sums of the Möbius Function
(1) M(x) ≪ x 1 2. Conversely, the estimate M(x) ≪ x 12+ǫ implies, by partial summation, the convergence of the series ∑∞ n=1 μ(n)n −s = 1/ζ(s) for any σ > 1/2, and therefore RH. Subsequently, E. Landau [5] showed that, assuming RH, (1) is valid with ǫ ≪ log log log x/ log log x, and E.C. Titchmarsh [13] improved this to ǫ ≪ 1/ log log x. H. Maier and H.L. Montgomery [7] obtained a substantial i...
متن کاملthe effects of error correction methods on pronunciation accuracy
هدف از انجام این تحقیق مشخص کردن موثرترین متد اصلاح خطا بر روی دقت آهنگ و تاکید تلفظ کلمه در زبان انگلیسی بود. این تحقیق با پیاده کردن چهار متد ارائه اصلاح خطا در چهار گروه، سه گروه آزمایشی و یک گروه تحت کنترل، انجام شد که گروه های فوق الذکر شامل دانشجویان سطح بالای متوسط کتاب اول passages بودند. گروه اول شامل 15، دوم 14، سوم 15 و آخرین 16 دانشجو بودند. دوره مربوطه به مدت 10 هفته ادامه یافت و د...
15 صفحه اولA Remark on Partial Sums Involving the Mobius Function
Let 〈P〉 ⊂ N be a multiplicative subsemigroup of the natural numbers N= {1, 2, 3, . . .} generated by an arbitrary set P of primes (finite or infinite). We give an elementary proof that the partial sums ∑ n∈〈P〉:n≤x (μ(n))/n are bounded in magnitude by 1. With the aid of the prime number theorem, we also show that these sums converge to ∏ p∈P (1− (1/p)) (the case where P is all the primes is a we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi
سال: 2019
ISSN: 2146-538X
DOI: 10.17714/gumusfenbil.538739